2-Chromatic Steiner Quadruple Systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper chromatic number of Steiner triple and quadruple systems

The upper chromatic number χ(H) of a set system H is the maximum number of colours that can be assigned to the elements of the underlying set of H in such a way that each H ∈ H contains a monochromatic pair of elements. We prove that a Steiner Triple System of order v ≤ 2 − 1 has an upper chromatic number which is at most k. This bound is the best possible, and the extremal configurations attai...

متن کامل

5-Chromatic Steiner Triple Systems

We show that, up to an automorphism, there is a unique independent set in PG(5,2) that meet every hyperplane in 4 points or more. Using this result, we show that PG(5,2) is a 5-chromatic STS. Moreover, we construct a 5-chromatic STS(v) for every admissible v ≥ 127.

متن کامل

The existence of resolvable Steiner quadruple systems

A Steiner quadruple system of order v is a set X of cardinality v, and a set Q, of 4-subsets of X, called blocks, with the property that every 3-subset of X is contained in a unique block. A Steiner quadruple system is resolvable if Q can be partitioned into parallel classes (partitions of X). A necessary condition for the existence of a resolvable Steiner quadruple system is that v = 4 or 8 (m...

متن کامل

Affine-invariant strictly cyclic Steiner quadruple systems

A Steiner quadruple system of order v, denoted by SQS(v), is a pair (V, B), where V is a finite set of v points, and B is a collection of 4-subsets of V , called blocks or quadruples, such that each 3-subset (triple) of V is contained in exactly one block in B. An automorphism group of SQS(v) is a permutation group on V leaving B invariant. An SQS(v) is said to be cyclic if it admits an automor...

متن کامل

Classification of Flag-Transitive Steiner Quadruple Systems

A Steiner quadruple system of order v is a 3 − (v, 4, 1) design, and will be denoted SQS(v). Using the classification of finite 2-transitive permutation groups all SQS(v) with a flag-transitive automorphism group are completely classified, thus solving the ”still open and longstanding problem of classifying all flag-transitive 3− (v, k,1) designs” (cf. [5, p. 273], [6]) for the smallest value o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 1980

ISSN: 0195-6698

DOI: 10.1016/s0195-6698(80)80009-6